Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Carmen Guzmán-Miralles, Oscar Castillo, Antonio Luque,* Javier I. Beitia and Pascual Román

Departamento de Química Inorgánica, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain

Correspondence e-mail: qipluara@lg.ehu.es

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ Disorder in main residue R factor = 0.032 wR factor = 0.089 Data-to-parameter ratio = 25.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

µ-Oxalato-bis[aqua(diethylenetriamine)nickel(II)] dinitrate

The crystal structure of the title compound, $[Ni_2(C_2O_4)-(C_4H_{13}N_3)_2(H_2O)_2](NO_3)_2$, consists of uncoordinated nitrate anions and dimeric cations, where the oxalate ligand is coordinated in a bis-bidentate fashion to centrosymmetrically related Ni^{II} atoms. The distorted octahedral environment of each Ni^{II} atom is completed by the three N atoms of the diethylenetriamine ligand in a *fac* arrangement and one water O atom. Variable-temperature magnetic susceptibility measurements reveal a moderate intramolecular antiferromagnetic coupling.

Received 27 July 2001 Accepted 9 August 2001 Online 17 August 2001

Comment

The design and synthesis of oxalato-bridged nickel(II) complexes have attracted much attention during the last few years due to the strong magneto-structural correlations found in this kind of complex (Román *et al.*, 1996; Escuer *et al.*, 1994). In the framework of our current research of polynuclear oxalato-containing first-row transition metal complexes (Castillo *et al.*, 2000, 2001) we have obtained the compound μ -oxalato-bis[aqua(diethylenetriamine)nickel(II)] dinitrate, (I).

The crystal structure of (I) comprises NO_3^- anions and $[Ni_2(C_2O_4)(C_4H_{13}N_3)_2(H_2O)_2]^{2+}$ binuclear cations (Fig. 1) having a centre of symmetry at the midpoint of the C–C bond of the oxalate bridge. As observed in related compounds (Travnicek *et al.*, 1997; Román *et al.*, 1996; Escuer *et al.*, 1994), the oxalate ion joins two adjacent coordination polyhedra with its O atoms occupying two *cis* positions in both polyhedra, and the diethylenetriamine group acts as a facially coordinated tridentate ligand. The coordination geometry around each metal atom is NiN₃O₃ distorted octahedral, with the O1, O2, N1 and N7 atoms in the equatorial plane [maximum deviation 0.010 (2) Å for N7]; N4 and O3W are on the axial sites. The

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I) showing the hydrogen bonds between the anions and cations. Displacement ellipsoids are shown at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

nickel-nickel separation across the bridging oxalate is 5.487 (1) Å and the Ni-oxalato-Ni fragment is nearly planar. In the crystal structure of (I), complex cations and nitrate anions are held together by means of an extensive threedimensional network of $OW-H\cdots O$, $N-H\cdots O/OW$ hydrogen bonds. Magnetic susceptibility data of (I) in the temperature range 1.8-300.0 K show the occurrence of an intramolecular antiferromagnetic interaction with J = -27.2 cm^{-1} and g = 2.20. The magnitude of the exchange coupling constant is within the range found for oxalatebridged nickel(II) complexes with a NiN₃O₃ chromophore.

Experimental

Ni(NO₃)₂·6H₂O (2.670 g, 9.20 mmol) dissolved in water (20 ml) was added dropwise to a mixture of diethylenetriamine (1.0 ml, 9.20 mmol) and $K_2C_2O_4H_2O$ (0.850 g, 4.60 mmol) in water (30 ml) to give an immediate blue polycrystalline powder. Blue crystals of (I) suitable for X-ray analysis were obtained by recrystallization in hot water.

Crystal data

[Ni ₂ (C ₂ O ₄)(C ₄ H ₁₃ N ₃) ₂ -	D_m measured by flotation in a
$(H_2O)_2](NO_3)_2$	mixture of carbon tetrachloride
$M_r = 571.80$	and bromoform
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 12.560 (2) Å	Cell parameters from 25
b = 7.243 (2) Å	reflections
c = 13.387 (2) Å	$\theta = 7.5 - 13.2^{\circ}$
$\beta = 117.96 \ (2)^{\circ}$	$\mu = 1.83 \text{ mm}^{-1}$
V = 1075.7 (4) Å ³	T = 293 (2) K
Z = 2	Prism, blue
$D_x = 1.765 \text{ Mg m}^{-3}$	$0.40 \times 0.40 \times 0.25 \text{ mm}$
$D_m = 1.75 (1) \text{ Mg m}^{-3}$	

Data collection

Enraf–Nonius CAD-4	
diffractometer	
$\omega/2\theta$ scans	
Absorption correction: empirical	
via ψ scan (North et al., 1968)	
$T_{\min} = 0.494, \ T_{\max} = 0.633$	
5512 measured reflections	
4732 independent reflections	
3495 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.089$ S=1.034732 reflections 184 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

N

Selected geometric parameters (\dot{A}, \circ) .					
Ni1-O1	2.1081 (11)	Ni1-N1	2.0822 (14)		
Ni1-O2	2.1125 (12)	Ni1-N4	2.0758 (18)		
Ni1-O3W	2.0935 (17)	Ni1-N7	2.0641 (15)		
O1-Ni1-O2	78.89 (4)	O2-Ni1-N7	90.55 (5)		
O1-Ni1-O3W	90.02 (6)	O3W-Ni1-N1	94.82 (7)		
O1-Ni1-N1	90.23 (5)	O3W-Ni1-N4	175.41 (6)		
O1-Ni1-N4	94.34 (6)	O3W-Ni1-N7	92.32 (7)		
O1-Ni1-N7	169.13 (5)	N1-Ni1-N4	83.75 (7)		
O2-Ni1-O3W	88.74 (6)	N1-Ni1-N7	100.13 (6)		
O2-Ni1-N1	168.57 (5)	N4-Ni1-N7	83.66 (7)		
O2-Ni1-N4	93.50 (6)				

 $R_{\rm int} = 0.019$ $\theta_{\rm max} = 35.0^{\circ}$ $h = -20 \rightarrow 17$ $k=0\rightarrow 11$ $l = 0 \rightarrow 21$ 2 standard reflections every 98 reflections

> frequency: 60 min intensity decay: 1%

 $w = 1/[\sigma^2(F_o^2) + (0.0487P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 0.5287P]

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.73 \text{ e } \text{\AA}^{-3}$

Table 2		
Hydrogen-bonding geometry (A	Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1 - H11 \cdots O3W^{i}$	0.87 (2)	2.53 (2)	3.343 (2)	157 (2)
$N1 - H12 \cdots O11^{ii}$	0.88(2)	2.26 (2)	3.069 (2)	152 (2)
O3W−H31W···O1 ⁱⁱ	0.83(2)	1.98 (3)	2.767 (2)	157 (3)
O3W−H32W···O11	0.83 (4)	1.96 (3)	2.764 (2)	165 (4)
O3W−H32W···O13	0.83 (4)	2.57 (4)	3.227 (3)	138 (3)
N4-H41···O11 ⁱⁱⁱ	0.85(2)	2.39 (2)	3.231 (2)	170 (3)
$N4-H41\cdots O12^{iii}$	0.85(2)	2.49 (3)	3.164 (3)	137 (2)
$N7 - H71 \cdot \cdot \cdot O13^{ii}$	0.888 (19)	2.45 (2)	3.301 (3)	161 (2)
$N7 - H72 \cdots O2^{iv}$	0.86 (3)	2.25 (3)	3.087 (2)	164 (3)

Symmetry codes: (i) $\frac{3}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) $\frac{3}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iii) 1 - x, 2 - y, -z; (iv) 1 - x, 1 - y, -z.

The diethylenetriamine ligand shows a disordered arrangement of the C6 atom over two positions. Refinement of the site-occupation factors revealed a partial occupation close to 0.9 and 0.1, which were kept fixed to these values in the final refinement.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Universidad del País Vasco/ Euskal Herriko Unibertsitatea (project UPV/EHU 169.310-EA-8057/2000) and a predoctoral fellowship (MEC-AP 18598566).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Castillo, O., Luque, A., Lloret, F. & Román, P. (2001). *Inorg. Chem. Commun.* 4, 350–353.
- Castillo, O., Luque, A., Sertucha, J., Román, P. & Lloret, F. (2000). *Inorg. Chem.* **39**, 6142–6144.

- Escuer, A., Vicente, R., Ribas, J., Jaud, J. & Raynaud, B. (1994). *Inorg. Chim.* Acta, 216, 139–145.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Román, P., Guzmán-Miralles, C., Luque, A., Beitia, J. I., Cano, J., Lloret, F., Julve, M. & Alvarez, S. (1996). *Inorg. Chem.* **35**, 3741–3751.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Travnicek, Z., Smekal, Z. & Marek, J. (1997). Z. Kristallogr. New Cryst. Struct. 212, 123–124.